Valuation Rings

Recall that a submonoid I't of a group I' defines an ordering on I', where
x >y iff t —y € I'". The set of elements x such that x and —x both belong
to I'* is a subgroup; dividing by this subgroup we find that in the quotient
x >y and y > x implies x = y. If this property holds already in I" and if in
addition, for every z € I" either & or —x belongs to I'", the ordering defined
by I't is total.

A (non-Archimedean) valuation of a field K is a homomorphism v from
K* onto a totally ordered abelian group I' such that v(z+y) > min(v(z), v(y))
for any pair x,y of elements whose sum is not zero. Associated to such a
valuation is R =: {z : v(z) € I['"} U {0}; one sees immediately that R is a
subring of K with a unique maximal ideal, namely {z € R : v(x) # 0}. This
R is called the valuation ring associated with the valuation R.

Proposition 1 Let R be an integral domain with fraction field K. Then the
following are equivalent:

1. There is a valuation v of K for which R 1is the associated valuation
ring.

For every element a of K, either a or a™' belongs to R.
The set of principal ideals of R is totally ordered by inclusion.

The set of ideals of R is totally ordered by inclusion.

R is local and every finitely generated ideal of R is principal.

Proof: (1) implies (2) is clear.

(2) implies (1) is easy: let I' be the group K*/R* and let I't be the
submonoid R — {0}/ R*.

(2) implies (3): This is clear, since the ordered set of principal ideals can
be identified with the set ordered monoid R — {0}/R*.

(3) implies (4): Suppose that I and J are ideals of R and [ is not contained
in J. Choose some a € I\ J. Let b be any element of J. Since a & J, a in(b),
and hence (b) C (a) C I It follows that J C 1.

(4) implies (5): Since the set of ideals of R is totally ordered, R has
a unique maximal ideal, and hence is local. To prove that every finitely
generated ideal is principal, it will suffice to show that any ideal which is
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generated by two elements is in fact principle. But if I = (f,g), either
(f) € (g) or (9) < (f), so certainly I = (f) or (g).

(5) implies (2). Suppose that a and b are elements of R, and let m be the
maximal ideal of R, and let I be the (a,b). Then since I is principal, I /mI is
a one-dimensional vector space over the field k =: R/m, and hence the images
of a and b are linearly dependent. Thus we can find elements v and v of R
such that ua+vb € mI, with v and v not both in m. Furthermore, we can find
x and y in m such that ua+vb = za+yb, i.e. a(u—x) = b(y —v). Now if for
example v is a unit, so is u—z, and we see that a/b = (y—v)/(u—2z) € R. 0

The following characterizations of valuations rings is more substantial.

Theorem 2 Let R be an integral domain contained in o field K. Then the
following conditions are equivalent:

1. R is a valuation ring of K.

2. R is local, and is mazimal among local subrings of K under the partial
ordering of domination.

3. There exists an algebraically closed field L and a homomorphism 6: R —
L (not necessarily injective) with respect to which R is mazimal: if

RC R CK and0: R — L prolongs 0, then R = R'.

Proof: (1) implies (2): Suppose that R is a valuation ring and is contained
in a local subring R’ of R. If x € R’ and v € R, then y =: 7! € R. But
then x=! also belongs to R, so that y maps to a unit in R’ and is not a unit
in R; this means that R’ does not dominate R.

(2) implies (3): Let k be the residue field of R, let k — L be an algebraic
closure of k, and let 8: R — L be the composite R — k — L. Suppose that
R’ is a subring of K containing R and ¢': R" — L extends 6. Let m’ be the
kernel of #. Then 6 factors through the localization R” of R’ by &', so we
may as well replace R' by R” and assume that R’ is local, with maximal
ideal m/. Since ' prolongs 6, m maps to m’, so R’ dominates R. Then by
assumption R = R/, as claimed.

(3) implies (1): First we prove a general lemma about ring extensions.
Suppose that B is an A-algebra and b is an element of B. Recall that b is
integral over A iff the subalgebra A[b] of B generated by A and b is a finitely
generated A-module. (Note that the map A — A[b] might not be injective.)
We can also consider the subalgebra A[b~!] of By.
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Lemma 3 Ifb is any element of an A-algebra B, either b is integral over A,
or A[b='/(b7") is not zero.

To see this, let ¢ =: b~! € By, and suppose that the ring Alc]/(c) is zero.
Then c is a unit of Alc|, and hence one can find elements a; of A such that
c(anc™ + ay_1c" 1+ - -ag) = 1 in the ring B,. Multiplying by 6" we find
that a, + a,_1b + - - -apb™ = b™*! in By, and it follows that there exists an
integer k > 1 such that a,b* + a,_ 6" + ... qeb"™*~1 = p"*+* in B, proving
that b is indeed integral over A. O
Now we can prove that (3) implies (1). First let us observe that (3) implies
that R is a local ring, with maximal ideal the kernel of 6. Indeed, if 6(z) is
not zero, then 6(zx) is a unit of L, and hence # prolongs to the localization
of R by x. By the maximality property of 6, this localization is just R itself,
so x is a unit of R. Now suppose that x is any element of K. If z is integral
over R then R’ := R[] is a finite extension of R and the maximal ideal m of
R lifts to some maximal ideal m’ of of R'. Then R'/m/ is a finite extension
of R/m and since L is algebraically closed, ¢ extends to R'/m’ and hence to
R'. Then R' = R and € R. On the other hand, if z is not integral over R,
the lemma implies that y =: z7! is not a unit of R[y], so there is a maximal
ideal m’ of R[y] containing y. Then R — R[y] — Rly]/m/ is surjective, and
hence its kernel is a maximal ideal of R, which can only be the kernel of 6.
This implies that 6 prolongs to R[y|, and hence that y € R. In paricular it
follows that K is the fraction field of R and that R is a valuation ring of K.
O

Corollary 4 If R is a local ring contained in a field K, there exists a valu-
ation ring R’ of K which dominates R.

Proof: Consider the family of local subrings of K with the partial ordering of
domination. Thanks to the Hausdorff maximality principal, it will suffice to
show that every chain has an upper bound. If C is such a chain, let V' be the
union of the elements of C. It is clear that V' is a subring of K. Furthermore,
notice that if @ € A € C, then a is a unit of A iff it is a unit of V—for if
a~! € V, then a=! € B for some B € C, and since B dominates A, a must
have already been a unit in A. Now it is clear that if x and y elements of V'
which aren’t units, then x + y is also not a unit, so that V' is a local ring,
and also that V' dominates R. The corollary follows. O]



Corollary 5 Suppose that x and & are two points in a scheme X and that x
s a specialization of &. Then there exists a valuation ring V' and a morphism
Spec V' — X which sends the generic point to & and the special point to x.

Proof: Any affine neighborhood of = contains £, so we may as well assume
that X is affine. Furthermore, x belongs to the closure of &, so we may
replace X by this closure, i.e. we may assume that X = Spec A, where A is
an integral domain and & corresponds to the zero ideal. Let K be the fraction
field of A and let R C K be the localization of A at the ideal corresponding
to . Now by the previous corollary, there is a valuation ring V' of K which
dominates R. The map A — R — V gives what we want. O]

Corollary 6 If A is an integral domain contained in a field K, then the
intersection of all the valuation rings V' of K which contain A is precisely
the integral closure A of A in K.

Proof: It is easy to see that a valuation ring is integrally closed in its field of
fractions, and hence that A is contained in every valuation ring containing
A. If x € K is not integral over A, then let y =: 7!; by the lemma we see
that Afy]/(y) is not zero. Let n be a maximal ideal of Afy| containing y and
let V' be a valuation ring of K which dominates the localization of A[y] at n.
Then y belongs to the maximal ideal of V' and hence x does not belong to
V. O
Now let’s discuss discrete valuation rings.

Theorem 7 Let V' be an integral domain. The following are equivalent.
1. V' is a noetherian valuation ring.
2. Vs local and is a principal ideal domain.

3. V' is noetherian and local and its maximal ideal is generated by a single
element.

4. 'V is noetherian, local of Krull dimension less than or equal to one, and
integrally closed in its field of fractions.

Proof: In a valuation ring every finitely generated ideal is principal, so (1)
implies (2), and a local ring is a valuation ring iff every finitely generated
ideal is principal, so (2) implies (1). A principal ideal domain is noetherian,
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so (2) implies (3). To prove that (3) implies (2), suppose that 7w generates
the maximal ideal of V. Since V is noetherian, Nm? = 0. If a # 0, there is
then a k such that a € m* \ m*"!, so a = a/7* with @’ € m. Hence d' is a
unit and (a) = (7%). Write v(a) for this k. If I is a nonzero ideal of V, let v
be the minimum of v(a) over all the nonzero elements a € I. Then I = (7%),
and hence is principal, concluding the proof of the equivalence of (1) through
(3).

Since a principal ideal domain has dimension at most one and is integrally
closed, (2) implies (4). It remains only to prove that (4) implies (3). If the
maximal ideal m of V' is zero, V' is a field. Assume this is not the case. Since
m is finitely generated, Nakayama’s lemma implies that there is some element
7w € m\ m? It will suffice to prove that m = (7). Since V is integral, (0) is
a prime ideal, and since V' has dimension at most one, (0) C m is a maximal
chain of primes. Thus the dimension of V' is in fact one, and since every
prime ideal P contains (0) and is contained in m, V has exactly two prime
ideals. Since m # 0, the quotient V/(7) has only one prime ideal, namely
m/(m), and hence every element of m/(7) is nilpotent. Since m is finitely
generated, it follows that m® C (7) for some 7. It will suffice to prove that
the smallest such ¢ is 1. Suppose that this ¢ is at least 2. Choose a € m*~*.
Then for any z € m, ax € m‘, and hence ax = 7y for some y € V. Since
a€m™and i > 2, a € mand ar € m? Since 7 € m?, y is not a unit,
so y € m. We have just proved that multiplication by the element a/m of
the fraction field K of V maps m into itself. But m is a finitely generated
faithful V-module, and it follows from this that a/7 is integral over V. Since
V' is integrally closed in K, it follows that a/m € V| i.e., a € (7). Thus we
have proved that m*~! C (7), contradicting the minimality of 1.
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